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 19 

Abstract  20 

Experiments measuring friction over a wide range of sliding velocities find that the 21 

value of the friction coefficient varies widely: friction is high and behaves according to 22 

the rate and state constitutive law during slow sliding, yet markedly weakens as the 23 

sliding velocity approaches seismic slip speeds. We introduce a physics-based theory to 24 

explain this behavior.  Using conventional microphysics of creep, we calculate the 25 

steady-state velocity and temperature dependence of contact stresses during sliding, 26 

including the thermal effects of shear heating.  Contacts are assumed to reach a coupled 27 

thermal and mechanical steady-state, and friction is calculated for steady sliding. 28 

Results from theory provide good quantitative agreement with reported experimental 29 

results for quartz and granite friction over 12 orders of magnitude in velocity. The new 30 

model elucidates the physics of friction and predicts the connection between friction 31 

laws and independently determined material parameters. In this paper we show that the 32 

theory fits well low confining stress and room temperatures experiments. In a 33 

companion paper in this issue the same theory is used to model high temperature 34 

experiments.  35 

 36 
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 51 

1) Introduction 52 

 The physics controlling frictional resistance during sliding between surfaces has 53 

been intensely studied for centuries. It is of particular importance to earthquake physics, 54 

as the relation between friction and shearing velocity controls stability of sliding on 55 

geological faults and earthquake nucleation, location and size (e.g. Scholz, 1998). Thus, 56 

previous work concentrated on the relation between friction and velocity and between 57 

friction and temperature (for reviews see Marone 1998; Scholz, 2002). Experimental 58 

observations on many geologic materials show that at low slip velocities friction is high 59 

(~0.6-0.8) and has only a second order dependence on velocity. Above a critical 60 

velocity friction falls precipitously, as shown in Fig 1 (DiToro et al, 2011). At 61 

intermediate velocities there may be a peak in friction for some materials (Spagnuolo et 62 

al, 2016), as also seen in Fig 1. In addition, friction is observed to change as a function 63 

of ambient temperature in all materials (e.g. Blanpied et al 1995, Lockner et al 1986, 64 

Chester 1994, Van Diggelen et al 2010, Verberne et al 2015, Chester and Higgs 1992). 65 

An important challenge is to combine all these observations into a coherent, physics-66 

based, description of friction as function of the full range of velocity, from slow to very 67 

fast, varying normal stress up to a few hundred of MPa and varying ambient 68 

temperature up to the brittle ductile transition. This is basic for understanding 69 

earthquake physics, assessing stability of faults, and predicting the brittle-ductile 70 

transition in the earth (e.g. Marone and Scholz 1988, Scholz 1988, 1998). 71 

 72 

i. Previous Work on the Physics of Friction – micromechanics of contacts   73 

In their classic series of works on friction, Bowden and Tabor (1964) suggested that 74 

the friction coefficient, µ, measured macroscopically as the ratio of shear to normal 75 

stress applied to the surface during sliding, µ=n / actually reflects some averaging of 76 

the physical interactions that occur among a multitude of interacting microscopic 77 

contacts during sliding (Fig 2a). Bowden and Tabor (abbreviated here as B&T) 78 

suggested that the real area of contact between surfaces, Ar, is much smaller than the 79 

apparent area of the surface, A, and is given bycAr=W, where W is the normal load 80 

andc is the indentation hardness of the material. Thus each contact is under a much 81 

higher normal stress than the nominal stress n, and the contact stress is c=nA/Ar. If 82 

the contacts require a specific shear stress,c, for yielding in shear, then the shear force 83 
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needed to shear the surface is F=cAr, and the coefficient of friction becomes µ 84 

=F/W=c/c. This idea, of existence and yielding of microscopic contacts as the origin 85 

of macroscopic friction, is one of the pillars of present day understanding of dry friction 86 

(e.g. Stachowiak & Batchelor 2013).  87 

It is by now well established (e.g. Dieterich & Kilgore 1994, Rubenstein et al 2004) 88 

that indeed shearing surfaces touch at a sparse array of contacts (Fig 2a), that at room 89 

temperature constitute < 1% of the apparent area, A. The main issue is finding the 90 

appropriate expressions forc and c, as these are not simply constant values of plastic 91 

yield stresses, as initially was assumed. One demonstration of the non-constancy of 92 

contact stresses comes from the observation (Dietrich & Kilgore 1994) that the real 93 

contact area, Ar, grows logarithmically with time of contact, so that c decays 94 

logarithmically with contact time. Indeed, static friction, the resistance to initiate sliding 95 

from rest, is measured to increase logarithmically with contact time (Dieterich 1972). 96 

Another demonstration for the non-constancy of c & c is the observed variation of 97 

friction with slip rate and temperature (e.g. Blanpied et al 1995, Chester and Higgs 98 

1992). 99 

 100 

ii. Previous Work on the Physics of Friction – Rate and State theory 101 

  In addition to the contact-yielding concept of B&T, the empirically-based Rate 102 

and State (R/S) theory was developed to model observations on friction, that showed 103 

that the macroscopic steady-state friction, ss, depends logarithmically on slip rate V 104 

(Scholz et al, 1972) and on hold time in stationary contacts (Dieterich, 1972). The R/S 105 

friction law, in its several variations (Dieterich 1979, Ruina 1983) now thirty years old, 106 

sparked a revolution in earthquake physics.  It allowed us the ability to understand 107 

frictional instability in terms of a small number of empirical friction parameters that 108 

could be readily measured in the laboratory.  From this the gamut of earthquake 109 

behavior could be deduced (e.g. Scholz, 1998).  For steady-state sliding R/S can be 110 

written as (e.g. Scholz, 1998) 111 

n n *+(a-b)ln(V/V*)]          112 

The constants *
 & V* are often chosen arbitrarily in R/S literature, and the constant 113 

pre-factors a and b are viewed as defining linearization about steady-state. In this 114 

framework, the relative values of a and b control stability of sliding, and therefore are 115 
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suggested to control earthquake nucleation (Dieterich 1978, Scholz 1998). Eqn (1) was 116 

shown by many experiments to provide a good description of sliding friction at slow 117 

velocities (e.g. see reviews in Marone 1998; Baumberger & Caroli 2006).  118 

R/S is very different in concept from B&T theory, as it was developed as a constitutive 119 

empirical relation without considering the physics of contacts. Yet, although the 120 

ln(V/V*) term in eq (1) was introduced empirically by Dieterich (1979,1978) and Ruina 121 

(1983), many studies suggest that it arises from thermally activated creep processes at 122 

asperity contacts (e.g. Chester 1994, Heslot et al. 1994, Brechet & Estrin 1994, 123 

Baumberger 1997, Nakatani 2001, Rice et al, 2001, Baumberger & Caroli 2006, Noda 124 

2008, Putelat et al 2011). Since at room temperature real contact area is typically <1% 125 

of the nominal area (e.g. Dieterich & Kilgore 1994, Rubenstein et al 2004), assuming 126 

10MPa applied normal stress, each contact experiences stress of the order of 1GPa. At 127 

such high stress, creep is expected to be exponential in stress, and may proceed by one 128 

or several of the following physio-chemical mechanisms: stress corrosion, leading to 129 

subcritical crack growth (Atkinson, 1987) and static fatigue (Scholz, 1972); Peierls-type 130 

mechanisms impeding dislocation glide (Evans & Goetze 1979, Tsenn &Carter 1986, 131 

Rice et al 2001), and solution transfer creep (pressure solution) (Nakatani & Scholz 132 

2004a,b). In friction there are two components of creep that must be considered: normal 133 

creep that shortens the contact and increases its area, and creep on contact surfaces that 134 

accommodates shear sliding (Fig 2b).  Thermally activated creep in both these 135 

components was used to explain/predict the observed R/S behaviors, for both slow (e.g. 136 

Brechet and Estrin 1994; Nakatani 2001, Nakatani & Scholz 2004a,b, Baumberger & 137 

Caroli 2006) and intermediate rate sliding (Bar Sinai et al, 2014, Noda 2008). 138 

 139 

iii. Recent Work on the Physics of Friction – high slip rate  140 

 A different behavior from the R/S logarithmic behavior occurs at high slip rate. 141 

Using new high-speed experimental apparatuses, a dramatic weakening was observed at 142 

all sliding materials (Fig 1) at around V~O(10-2) m/s, independent of material (e.g. 143 

DiToro et al 2004, 2011; Han et al 2007, 2010; Del Gaudio et al., 2009; Hirose & 144 

Bystricky, 2007; Nielsen et al., 2008; Mizoguchi et al., 2007; Ferri et al., 2010; De 145 

Paola et al. 2011; Fondriest et al 2013; SimanTov et al 2015; Boneh et al 2013; 146 

Proctor et al 2014). This high-velocity weakening has been attributed to a variety of 147 

mechanisms, all of them related to shear-heating: 148 
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1) “Flash heating” of highly–stressed, short-lived, contact asperities. Heated contacts 149 

soften and weaken, and even melt at high V (e.g. Yao et al 2016; Goldsby & Tullis 150 

2011; Rice 2006; Beeler et al 2008).  151 

2) Chemical/phase changes: e.g. decomposition in carbonates (e.g. Sulem & Famin 152 

2009; Goren et al 2010), or Silica gel formation in quartz (e.g. Goldsby & Tullis 2002, 153 

Kirckpatrick et al 2013). 154 

3) Thermal pressurization due to shear heating of pore fluids (e.g. Rice 2006; Ferri et 155 

al 2010; Goren & Aharonov 2007, 2009, 2011; Faulkner et al., 2011; Noda & Lapusta, 156 

2013). 157 

4) Localization and thermo-elastic instabilities (e.g. Braeck and Podladchikov, 2007; 158 

Kelemen and Hirth, 2007; SimanTov et al 2015; Platt et al 2014; Brown and Fialko, 159 

2012), possibly also driven by decomposition (Platt et al, 2015). 160 

5) Special behavior of nano-grain layers, that often cover principle slip-zones in faults 161 

(e.g. Green et al 2014, Verberne et al 2014a,b, De Paola et al 2015, Chen et al 2013, 162 

Reches & Lockner 2010, SimanTov et al 2013, 2015).  163 

 Much of the above mentioned work (as well as other work) on high V sliding 164 

have been quite successful in explaining steady-state friction as function of velocity. 165 

Yet nearly always these studies allowed fitting of free parameters, and so didn’t involve 166 

full constraint by material parameters. In addition, none of the above works was able to 167 

carry the physics from low to high V, and from low to high ambient temperature and 168 

normal stress. They all looked at some window of the velocity, normal stress and 169 

temperature phase space.  170 

To summarize the current state of affairs in theoretical understanding of rock friction: 171 

separate theories exist for slow and fast shearing, many based on the Bowden and Tabor 172 

concept, and many are fitted somewhat freely. To the best of our knowledge, there is 173 

currently no unifying, physics-based model, which may be applied to different minerals, 174 

to predict friction across velocities and ambient temperatures. Such a model is needed to 175 

predict sliding stability of faults (e.g. Scholz 1998, Noda & Lupsta 2013) and the brittle-176 

ductile transition (e.g. Shimamoto & Noda 2014). 177 

 178 

iv. This work   179 

 The R/S friction laws, being empirical, were rather opaque, lending themselves to 180 

various interpretations of the physical processes represented by earthquake behavior and 181 
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their relationships with the parameters in the laws.  It was naively hoped that the friction 182 

parameters would be dependent only on the material, so that measurements of these for 183 

a few key fault-forming minerals would map out the seismogenic nature of faults in 184 

various environments. Laboratory measurements now show that the steady-state friction 185 

parameters, even for a given mineral type, vary in complex ways with sliding velocity, 186 

temperature, normal stress and with the microstructure formed on the fault sliding 187 

surfaces (e.g. den Hartog et al 2012; Verberne et al 2014a,b, 2015; Blanpied et al 188 

1995; Chester and Higgs 1992; Carpenter et al, 2016).  189 

These developments make it clear that for further progress to be made a physics-based 190 

friction law that incorporates the R/S friction elements needs to be developed.  Here we 191 

present some basic steps in that direction. We present a single, physics-based, friction 192 

law to explain friction observations in rocks, across a wide range of rock types, slip 193 

velocities and temperatures, predicting the data in Fig 1 and similar experimental 194 

findings. Our theory models friction at all velocities continuously, from low to high 195 

contact temperature regimes, connecting previously proposed physics of contact creep 196 

at low contact temperature, to flash heating at intermediate contact temperature, and to 197 

flash melting/decomposition at high contact temperature. Although our model is 198 

general, we apply our results first to quartz and granite, as these materials have currently 199 

the largest number of friction data. Also, most of the thermodynamic parameters that 200 

appear in our formulation of the friction law can be estimated from independent 201 

measurements for quartz. Hence for quartz-rich rocks we can make quantitative and 202 

independent comparisons of theory with friction experiments, rather than relaying on 203 

data fitting.  204 

Specifically, we show below that our model may explain and predict the following 205 

general observations that are not material specific: 206 

A.  High friction and 2nd order material-dependent V-dependence at low V. (R/S 207 

friction law behavior).   208 

B. Material independent abrupt thermally induced velocity-weakening above a critical 209 

V. 210 

C. Material dependent peak at intermediate V. 211 

D. All material dependencies result from independently determined variations in 212 

material properties.  213 
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In addition, we will show in a companion paper, Paper 2, that using the same 214 

parameters that were used here for the low T and low normal stress experiments, we 215 

may model steady-state quartz and granite friction at high T and high normal stress.  216 

 217 

2) Theory 218 

i.  Assumption 1: Friction arises from creep of contacts, and is predictable from 219 

contact stresses. 220 

 We follow B&T, assuming friction arises from interactions of highly-stressed 221 

contacts of microscopic asperities between surfaces or grains. The contacts exhibit time-222 

dependent shortening and spreading under the applied normal load, so that the asperity 223 

height h shortens with time via thermally activated creep driven by the normal stress on 224 

the contact, c. Since plasticity maintains volume, their contact area grows as they 225 

shorten, thereby reducing the contact stress c. In a similar manner, shearing is assumed 226 

to occur at a rate V via thermally-activated shear creep, driven by the shear stress on 227 

contacts, c. This formalism for the physics of friction has been extensively developed 228 

over the last decades (e.g. Heslot et al. 1994, Brechet & Estrin 1994, Nakatani 2001, 229 

Rice et al, 2001, Baumberger & Caroli 2006, Putelat et al 2011). Creep is assumed to 230 

be exponential in contact stresses c and c (e.g. Chester 1994, Evans & Goetze 1979, 231 

Tsenn & Carter 1986). Thermal activation depends on contact temperature, Tc, and uses 232 

the general expression for exponential creep based on rate theory (e.g., Poirier, 1985). 233 

Under these assumptions, the equations for the shearing velocity V and contact 234 

(asperity) compaction (or convergence) velocity, dh/dt, are:  235 

(2a)      					ܸ ൌ ௦ܸ௠௔௫	expሺ	െ
ொೞିఛ೎ேஐೞ	

ோ ೎்
	ሻ; 236 

(2b)									
ௗ௛

ௗ௧
ൌ െ ௡ܸ௠௔௫	expሺ	െ

ொೡିఙ೎ேஐೡ	

ோ ೎்
	ሻ; 237 

 238 

N is Avogadro number, R the gas constant, and h is the asperity height. Vsmax and Vnmax 239 

are reference, (highest possible), shear and normal creep rates, achieved when contact 240 

stresses are at their highest possible value ߬௖ ൌ ߬௖∗=Qs/Ns and ߪ௖ ൌ  ௖∗=Qv/Nv, 241ߪ

respectively. Note that if ߬௖ ൐ ߬௖∗ or ߪ௖ ൐  ௖∗, the physics in eqn (2) breaks down and a 242ߪ

different physics must control contact deformation. Eqn (2) describes thermally 243 

activated creep in which the deformation is controlled by thermally activated jumps 244 



 9

dictated by a pinning potential field with valley depth Q (activation energy) and spacing 245 

of valleys of the order of 
 

(activation volume). Eqns (2a) & (2b) are basically eqns 246 

6 & 12 of Putelat et al (2011), respectively. It is important to note that activation energy, 247 

Qs, and activation volume, s, for surface creep, may differ from bulk volumetric creep 248 

parameters, Qv and v, as depicted in Fig 2b. The potentially different values of 249 

activation energies and volumes for shear and normal creep will be discussed further 250 

below and shown by our results to be very important in controlling both the absolute 251 

value of the friction coefficient, and its velocity dependence.  252 

Although eqns (2a) and (2b) are symmetrical, the two dependencies of ߪ௖	&	߬௖	on 253 

shear velocity V are different. This difference is due to the different boundary conditions 254 

in the normal and tangential directions: while steady-state sliding experiments impose 255 

the shear velocity V as a boundary condition, the convergence rate dh/dt is not imposed. 256 

Its temporal evolution is solved from equation (2b). To solve eqn (2b), we assume that 257 

contacts in steady state sliding are created and destroyed continuously. Steady state 258 

entails that each contact has a lifetime that depends on sliding rate V and contact size d. 259 

For each contact the moment it is born is t=0, at which time the height of the contact is 260 

h0, its radius r0, and the normal stress on it ߪ௖଴. Following Brechet & Estrin (1994), 261 

Baumberger & Caroli (2006) and Putelat et al (2011), we assume constant contact 262 

volume during plastic deformation, i.e. r2h=r0
2h0, where r is contact radius at any time t. 263 

For steady-state sliding we assume constant number of equal sized contacts, n, per unit 264 

area, so ߪேߪ= ܣ௖Ar= ߪ௖nr2. Thus ߪ௖= ߪ௖଴h/h0 and dߪ௖/dt= (ߪ௖଴/h0) dh/dt. From these, 265 

eqn (2b) may be rewritten as 266 

 (2c)                       ௗఙ೎
ௗ௧

ൌ െ ௡ܸ௠௔௫
ఙ೎
బ

௛బ
expሺ	െ ொೡିఙ೎ேஐೡ	

ோ ೎்
	ሻ;  267 

 We can now integrate the differential equation (2c) to calculate the contact stress, 268 

 ௖(t), as function of time since formation of the contact, the thermodynamic variables, 269ߪ

and the initial contact stress ߪ௖଴ at time of contact formation.  270 

  (2d)                    ߪ௖ሺݐሻ ൌ ௖଴ሾ1ߪ െ ܾ′ lnሺ1 ൅  ௖ሻሿ;  271ݐ/ݐ

ሺ2݁ሻ																			ܾ′ ൌ
ܴ ௖ܶ	
௖ߪ
଴ܰΩ௩

; ௖ݐ		 ൌ ܾ′
݄଴
௡ܸ௠௔௫

expቆ
ܳ௩ െ ܰΩ௩ߪ௖଴

ܴ ௖ܶ
ቇ 

The characteristic time constant, tc,  was defined as the “cutoff time” by Berthoud et al, 272 

(1999), and its physical meaning will be discussed below in the Discussion.  273 
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In order to evaluate ߪ௖ (or Ar), the contact stress at time t=0, ߪ௖଴,	is needed. ߪ௖଴	was 274 

previously assumed (Putelat et al ,2011) to be ߪ௖଴ ൌ =∗௖ߪ
ொೡ
ேஐೡ

, meaning that if the 275 

‘indentation hardness’ was measured at time t=0, it would be equal to the highest 276 

possible stress for this process. However there are four main reasons to think that 277 

௖଴=Bߪ
ொೡ
ேஐೡ

,	with 0<B < 1: 278 

1. There is no physical argument that dictates that the two values- the ‘indentation 279 

hardness’ at time of contact initiation and the thermodynamic parameter 
ொೡ
ேஐೡ

, should be 280 

equal, and no reason to think contact stress is initially always at the value 
ொೡ
ேஐೡ

. 281 

2. An assumption that ߪ௖଴ = 
ொೡ
ேஐೡ

 forces contact-normal creep rate  (dh/dt in eqn 2b) at 282 

time t=0, to be independent of temperature, while it is reasonable to expect it to be 283 

thermally activated - to vanish at ௖ܶ=0 and increase to maximum rate, Vnmax, at ௖ܶ∞. 284 

This argument leads to 0<B<1. 285 

3. The assumption of B=1 in eqn (2e) implies that the cutoff time tc is constant with 286 

Tc, and the activation energy for tc, Ec, is 0. A factor 0<B<1 dictates that tc, the “cutoff 287 

time” for the logarithmic contact-area creep, is thermally activated, with an activation 288 

energy Etc=(1-B)Qv. In this case tc decreases with T, as measured by Nakatani & Scholz 289 

(2004a). A non-zero activation energy is measured by their experiments (their fig 7), 290 

and serves as proof that B should be <1.  291 

4. The indentation hardness at time t=0, ߪ௖଴, and thus also B, are expected to 292 

decrease with ambient temperature, following Evans (1984), who measured that 293 

indentation hardness of quartz drops by 30-50% as temperature is raised from 0 to 294 

500oC. So not only is B < 1, it is even not a constant. Instead it drops with the ambient 295 

temperature T0.  296 

 297 

 We now rewrite equation (2a-2d) doing two things- first inverting eqn (2a) to 298 

obtain ߬௖ as function of V, eqn (3b). Second, use the contact life time in steady-state 299 

sliding rate t=d/V (where d=2r is the contact diameter), in place of time in eqn (2d): 300 

( 3a)                 ߪ௖ሺݐሻ ൌ ܿߪ
0 ቀ1 െ ܾ′ ln ቀ1 ൅

݀

ܿݐܸ
ቁቁ 301 

( 3b)                 ߬௖ሺݐሻ ൌ ߬ܿ
∗ሺ1 ൅ ܽ′	݈݊ ቀ

ܸ

ݔܽ݉ݏܸ
ቁሻ 302 
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								ሺ3ܿሻ																							
௥ܣ
ܣ
ൌ
σே
௖଴ߪ

1

ቀ1 െ ܾ′ ln ቀ1 ൅
ௗ

௏௧೎
ቁቁ

 

(3d) 								ܽ′ ൌ ோ ೎்

ொೞ
; 		ܾ′ =ோ ೎்

஻ொೡ
	; = ௖଴ߪ		

ொೡ஻

ேஐೡ
;   ߬௖∗	ൌ	

ொೞ
ேஐೞ

௧௖=ܳ௩ܧ			; െ ܰΩ௩ߪ௖଴=(1-B)ܳ௩ 303 

ሺ3݁ሻ																			ݐ௖ ൌ ܾ′ ௗ

௏೙೘ೌೣ
exp ቀ

ா೟೎
ோ ೎்
ቁ ൌ ௖௥ݐ

೎்

೎்ೝ
exp(-

ா೟೎	୼୘ୡ

ோ	 ೎்	 ೎்ೝ
ሻ;	 304 

					 

Eqns (3d-e) provide the constants for calculating contact stresses ߪ௖ and	߬௖ in eqns 3a-305 

b. Eqn (3) is the same as in the above mentioned previous studies (see Putelet et al 306 

(2011) for detailed derivation, and Nakatani and Scholz (2004b), derivation of their eqn. 307 

13), except for the newly added pre-factor B, that affects mainly tc and its activation 308 

energy, ܧ௧௖. Assuming a reference cutoff time tcr at a reference temperature Tcr, and 309 

Tc=Tc -Tcr, and dividing tc by this reference cutoff time tcr, provides eqn(3e) as another 310 

formulation for the cutoff time, with more easily obtained parameters than those in 311 

eqn(2e). Note that the physics behind this formalism dictates that constants Vsmax & 312 

Vnmax are much greater than the sliding rate V, as they represent the physical upper limit 313 

to the creep-rate in the respective creep processes.  314 

Eqn (3c) provides the real contact area, calculated from eqn (3a) using ߪேߪ= ܣ௖Ar. 315 

The behavior predicted by (3c), namely logarithmic growth of real contact area with 316 

time, is observed in micro-indentation experiments by Scholz and Englder (1976) in 317 

both Olivine and Quartz.  318 

The friction coefficient is easily obtained from eqns (3) via  319 

ሺ4ܽሻߤ௦௦ ൌ
߬
௡ߪ

ൌ
߬௖
௖ߪ

 

The steady-state friction coefficient, ss, in eqn (4a) may be Taylor expanded, when 320 

the b’ term is much smaller than 1 in eqn (3a), to obtain:  321 

 (4b)  ߤ௦௦~ߤ଴ ቄ1 ൅ ܽ′ ln ቀ
௏

௏ೞ೘ೌೣ
ቁ ൅ ܾ′ ln ቀ1 ൅

ௗ

௧೎௏
ቁቅ 322 

ൌ ଴ߤ ൅ ܽ ln ൬
ܸ

௦ܸ௠௔௫
൰ ൅ ܾ ln ൬1 ൅

݀
௖ܸݐ

൰ 

ሺ4ܿሻ		ܽ ൌ ଴ߤ	′ܽ ൌ ଴ߤ
ܴ ௖ܶ

ܳ௦
; 		ܾ ൌ ଴ߤ′ܾ ൌ ଴ߤ

ܴ ௖ܶ

௩ܳܤ
଴ߤ		; ൌ 	

߬௖∗	
௖଴ߪ

ൌ
ܳ௦
௏ܳܤ

Ω௏
Ωௌ

 

Here n and are the applied normal and shear stress on the surface, and the variables 323 

a’,b’,tc are given by eqn (3d-e). Eqn (4b) is valid when the b term (not only the b pre-324 

factor) is sufficiently smaller than 1 in eqn (3a). It is easy to calculate that the b term 325 
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remains small under all realistic conditions: it is largest when either V 0 (which 326 

increases the absolute value of the ln term) or when Tc is high (which increases b). The 327 

coefficient b’ is of order 0.01 at room temperature (see Table 2), and grows to 5 times 328 

that value when Tc is near melting, which is still very small. The ln term is small as long 329 

as V fulfills the condition that V >> 
ௗ

௧೎
 e-1/b’ which, using the parameters of Table 1, is 330 

seen to be easily met for any geological slip rate. For accuracy we calculate friction in 331 

our model directly from 
ఛ೎
ఙ೎
,		i.e. from eqn (3) and not from eqn (4b), but the 332 

approximation of eqn (4b) is valid and therefore we use it below for analysis and 333 

explanation of frictional behaviors.  334 

 The equivalence between eqn (4b) and the R/S eqn (1), indicates that a, b and V* 335 

in R/S eq (1) are not arbitrary fitting constants, but instead represent material constants. 336 

These points are discussed at length in previous work (e.g. Rice et al 2001, Noda 2008, 337 

Baumberger & Caroli 2006, Putelet et al 2011).  338 

 As a consequence of eqn (4), contact temperature and friction are strongly 339 

coupled. During sliding, contact temperature, Tc, rises due to frictional shear-heating, 340 

which is controlled by the friction coefficient in eqn (4). On the other hand, rising Tc 341 

changes frictional resistance via pre-factors a, b and tc in eqns (3) & (4). Thus Tc and 342 

 are coupled, and this coupling is crucial in controlling intermediate to high-speed 343	௦௦ߤ

friction, as proven recently in the experiments of Yao et al (2016).  344 

 345 

ii. Assumption 2: Steady-state temperature and friction.  346 

As seen in DiToro et al (2011) (their fig 1, here reproduced as fig 3), high velocity 347 

friction weakens with slip and reaches a steady-state after sliding a distances Dth. This 348 

high velocity weakening is thermally induced, by various mechanisms including (but 349 

not limited to) flash heating, decomposition in carbonates, melting in quartz, and 350 

thermal pressurization. All of those mechanisms require a steady frictional heat 351 

production to be maintained, which results in negative feedback such that steady-states 352 

in friction and temperature are simultaneously maintained.  353 

To calculate the steady-state contact temperature, Tc, we follow previous formulations 354 

(e.g. Rice 2006, Noda 2008, Beeler et al 2008), and assume that sliding contacts 355 

undergo “flash heating”, via shear heating that takes place during short “contact-life-356 

times”. Flash heating of contacts elevates Tc by amount δܶ above the average 357 
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temperature of the surface, Ts, which also increases during sliding. Steady-state contact 358 

temperature Tc is thus approximated by the sum of the mean surface temperature after 359 

sliding distance Dth (eqn 1 in DiToro et al, 2011), Ts =	 ଴ܶ ൅
ఛ೎
ఘ஼

ఙ೙
ఙ೎
ට௏஽೟೓

గఈ
 , plus flash 360 

heating contributions on contacts, δܶ ൌ ఛ೎
ఘ஼
ට௏ௗ

గఈ
 , (eqn (3) from Rice 2006), where T0 is 361 

ambient temperature,  thermal diffusivity coefficient, C heat capacity, and  density of 362 

the material: 363 

 (5)						 ௖ܶ ൌ ௦ܶ ൅ 	δܶ ൌ ଴ܶ ൅
ఛ೎
ఘ஼
ට ௏

గఈ
ቂ√݀ ൅

ఙ೙
ఙ೎
ඥܦ௧௛ቃ 364 

At high enough sliding velocity, eqn (5) predicts contact temperatures Tc that exceed 365 

the phase transition temperature of the particular mineral, in this case the melting 366 

temperature in quartz (Tm). Yet thermodynamic considerations predict that the 367 

temperature at the contacts will remain at the phase boundary, i.e. Tc =Tm, even if V 368 

increases. To maintain Tc at Tm with increasing V, eqn (5) predicts shear stress at 369 

contact must follow ߬௖~ 1/√ܸ	, since  370 

6ሻ	߬௖௠ሺܸሻ ൌ ሺߙߨ√ܥߩ ௠ܶ௘௟௧ െ ଴ܶሻ/ ൬√ܸ ൤ඥ݀௠ ൅
௡ߪ
௖௠ߪ

ඥܦ௧௛൨൰ 

where we assume ݀௠ & ߪ௖௠	are constant and independent of V.  371 

 372 

3) Parameter values  373 

To solve coupled eqns (3-5) (and also eqn (6) once melting sets on) we constrain 374 

values of the parameters used, via previous independent measurements. All of these 375 

parameters are thermodynamic or mechanical parameters of the mineral. Here we 376 

concentrate on the mineral quartz for which many of those parameters are well 377 

determined.  378 

Activation energies Qv, Qs, values are constrained to within a factor of less than 2, 379 

which is not too bad given that the processes that control the creep are not well 380 

constrained. We expect a difference between Qv & Qs: Shear deformation involves very 381 

high strain in a surface layer whereas the surface-normal deformation involves 382 

presumably a much smaller (volumetric) strain.  These two processes may result in 383 

different defect structures, and especially the high dislocation density can result in 384 

strengthening of the surface layer. Additionally, these two processes may result in 385 

different interstitial water content which can greatly effect the activation energy of 386 



 14

quartz (Mainprice and Jaoule, 2009). The variability of Q as function of water content 387 

was measured by Mainprice & Jaoul (2009), who found dislocation creep activation 388 

energy in quartzite ranged between 185 kJ mol−1 for vacuum dried to 151 kJ mol−1 for 389 

0.4 wt% water added samples. Thus, activation energy for bulk deformation that 390 

controls normal creep, Qv, and surface deformation that controls shear creep, Qs, need 391 

not be equal. Activation energies cited previously in the literature do not distinguish 392 

between volume and surface processes, and do not even discuss the possibility for such 393 

difference. However here this difference is crucial as it will be shown later to determine 394 

the value of friction and its R/S behavior. Q associated with quartz friction usually 395 

ranges between 150 -250 KJ/mol (Nakatani 2001, Rice et al 2001, Kirby & Kronenberg 396 

1987, Mainprice and Jaoul, 2009), but values ranging between 90-500 KJ/mol have 397 

also been suggested (Nakatani 2000). Here we thus used values ranging between 150 -398 

250 KJ/mol based on the above citations.  399 

Similarly, volumetric and surface activation volumes, v and s respectively, are 400 

not precisely known and need not necessarily be equal. They again are expected to 401 

reflect specific defect structures and process, but values have not been suggested in 402 

connection to any specific physical process. Activation volumes are of the size of 403 

atomic volumes. Estimates for for	quartz	frictionvary up to 50%, ranging between 404 

(0.37nm)3=5*10-29m3 (Nakatani, 2001) to 5x(0.25nm)3 =7.8*10-29m3 (Rice et al 2001). 405 

To calculate cutoff times tc (eqn 3e), one needs either Vnmax or a reference cutoff time, 406 

tcr, at a reference contact temperature, Tcr. tcr values have been experimentally measured, 407 

while there is little knowledge of Vnmax. Room temperature tcr were measured in 408 

experiments to range from 1 s (Dieterich 1972,1978) to 10,000 s (Nakatani and Scholz, 409 

2004a), with the latter attributed to time scales of pressure solution. In addition, 410 

Nakatani and Scholz (2004b), measured tc as function of T0, and found tc is thermally 411 

activated, with an activation energy in quartz of Etc=58KJ/mol. We can use this 412 

measured Etc to constrain also the prefactor B: from eqn 3c, Etc=(1-B)Qv, so that  413 

assuming Qv=300KJ/mol and Etc=58KJ/mol gives B~0.81, while assuming 414 

Qv=170KJ/mol with this Etc gives B~0.66. These constraints on B should be used 415 

cautiously, due to the fact that this value of Etc was measured during pressure solution. 416 

Etc is probably different in the experiments that measured tcr~1s, since the controlling 417 

process is different, but we don’t know this for certain as Etc was not measured there.  418 
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An independent additional constraint on prefactor B comes from the value of yield 419 

stress, ߪ௖଴=
ொೡ஻

ேஐೡ
. Optical measurement of asperity contact sizes (Dieterich & Kilgore, 420 

1994,1996) on various materials including soda-lime and quartz suggest that ߪ௖଴ ~0.2G, 421 

or even larger, where G is shear modulus. This value is consistent with an estimate by 422 

Boitnott et al. (1992) and with micro-hardness indentation strengths measured by 423 

Dieterich & Kilgore (1994) (as interpreted by Rice et al (2001)). Using G=31GPa for 424 

quartz, this estimate suggests ߪ௖଴~6GPa, and using Qv=250KJ/mol and v=5*10-29m3 in 425 

=௖଴ߪ
ொೡ஻

ேஐೡ
	then predicts B~0.72. A lower activation energy, Qv=170KJ/mol gives higher 426 

value for B, B>0.9. However, high B values and low Qv values would dictate a low 427 

Etc<20KJ/mol (according to eqn 3e). We therefore use the following ranges: 428 

Qv=220±70 KJ/mol and B~0.85 ±0.1, consistent with all experimental constrains known 429 

today for Etc, ߪ௖଴, and Qv. This constrains Etc to be between 10-75 KJ/mol.   430 

The value of B quoted above is for room ambient temperature, yet ߪ௖଴	and B should be 431 

a function of T0. Evans (1984) showed that indentation hardness of quartz, i.e. yield 432 

stress, drops by 30-50% as T0 increases from 0 to 500C. To represent this effect we use 433 

B(T0)=Brexp(-0.0006(T0-Tr)), so that ߪ௖଴	drops with ambient temperature T0 following 434 

the trend in fig 5 of Evans (1984).   435 

Another parameter is the upper limit for shear rate, Vsmax. The maximum value of Vsmax 436 

has been equated to the natural vibration frequency of atoms in a mineral lattice, and 437 

linked to the shear wave velocity cs (Rice et al 2001). Noda (2008) uses physical 438 

arguments to argue that Vsmax is close to this limit of cs, Since V must be smaller than 439 

Vsmax for the creep physics in eqn (2) to hold, and since we use this creep physics across 440 

all V, we shall henceforth use Vsmax =0.5cs. However, we note that since Vsmax is under 441 

the ln, its exact value is probably not crucial.  442 

The contact diameter d is taken as 1-15m (Beeler et al 2008). 443 

Thermal parameters are needed for eqns 5&6: From experiments at high slip rate, the 444 

thermal equilibration distance, Dth, is found to drop with applied normal stress, for all 445 

rock types, following an empirical relationship (DiToro et al 2011) where Dth= k n
-q, 446 

and constants k and q depend on material. For lack of better constrains on k and q, we 447 

assume k=5 & q=1, which using the empirical relationship above predict Dth= 1m & 448 

1cm at 5Mpa & 400MPa respectively, fitting on the one end results from 5MPa shear 449 
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experiments on novaculite (Fig 2 of DiToro et al 2004) and at the other end providing 450 

Dth of order of 1cm at n >200MPa (DiToro et al, 2011).  451 

Additional thermal parameters are C, and . The thermal diffusivity for quartz is 452 

 =7 10-6 m2/s at room temperature, however existence of fault and gouge zone porosity 453 

reduces this diffusivity by up to an order of magnitude (Gibert and Mainprice 2009, 454 

their fig 8; SimanTov et al 2015). In addition,  drops with temperature (Vosteen & 455 

Schellschmidt, 2003), while the heat capacity, C, increases. We fit the thermal 456 

dependence of  of quartzite from Hanley et al (1978) (their fig 4). We then assume 1 457 

order of magnitude reduction in  due to porosity in the fault zone (see Table 1 for 458 

equation). Density, , is taken constant (Vosteen & Schellschmidt 2003). Table 1 reports 459 

the equation we fitted to the C variation with temperature shown in Vosteen & 460 

Schellschmidt (2003). Another parameter is the melting temperature, Tm, which for 461 

quartzite is ~ 1670C.  Rice (2006) uses a “weakening temperature” which could be 462 

equated with Tm, yet suggests it is lower than melting, 1000-1400C, representing 463 

weakening due to “pre-melting”. We consider all these values in our various 464 

calculations.  465 

 466 

Table 1 – table of parameters, definitions and values.  467 

parameter  

symbo

Values   units ref 

volumetric activation 

volume 

v (5 - 7.8) *10-29  m3 Nakatani 2001, Rice 2001 

 surface activation volum s (5 - 7.8) *10-29  m3 Nakatani 2001, Rice 2001 

 Volumetric activation 

energy 

Qv   150- 280  KJ/mol Nakatani 2001, Rice 2001, 

Mainprice & Jaoul 2009 

Surface activation energy Qs   150- 280  KJ/mol Nakatani 2001, Rice 2001, 

Mainprice & Jaoul 2009 

Prefactor  B 0.75-0.9 - here 

ontact diameter d 1-15*10-6 m Beeler et al 2008 

Maximum shear rate Vsmax here 0.5 cs  Noda 2008, Rice 2001 

Shear wave velocity  cs 3750   m/s www.quartz.com 

Reference cutoff time, 

room T 

tcr 100-106 s Dieterich 1972, 1978, 

Nakatni & Scholz 2004a 

cutoff time tc  s  from eqn 3 

activation energy for tc Etc 20-75 (calculated by  KJ/mol Nakatani &Scholz 2004a 
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eqn 3c) 

Thermal equilibration 

distance. 

Dth  =kn
q, here assume 

k=5, q =-1. 

m DiToro et al 2010, 2004 

(pre) melting temperature  Tm 1270-1670 K Rice 2006 

Ambient temperature T0 300 K imposed 

Heat capacity C 730*(1.7-200/Tc)  J/kg/K Fitting fig 4 of Vosteen & 
Schellschmidt 2003 

Thermal diffusivity  . 0*10-4/Tc - 
0.5*10-7;  0=0.8-5 

 m2/s  fitting Fig4 of Hanley et al, 
1978, assuming 1 order of 
magnitude reduction of by
porosity 

Density   2650 Kg/m3  

Contact temperature  Tc 300-2000 K Calculated from eq 5 

Shear rate V 10-12-10  m/s Imposed.  

Applied normal stress  n 5   MPa Imposed 

Steady-state friction coef ߤ௦௦ 0.01-1 - Calculated from eqn 3 

Contact shear stress  c (0.01-0.18) G  MPa Calculated from eqn 3 

Contact normal stress  c (0.1-0.22) G  MPa Calculated from eqn 3 

Shear- prefactor  a See Table 2 - Calculated from eqn 3 

Convergence- prefactor b See Table 2 - Calculated from eqn 3 

Avogadro number N 6 * 1023   1/mol  

Gas constant  R 8.3 J/mol/K  

Shear modulus  G 31 109  Pa  

  468 

 469 

4) Method  470 

Although eqn (4b) provides a good approximation of steady-state friction at all 471 

velocity ranges, for accuracy we calculate friction from the primitive friction equation, 472 

eqn (4a). We solve equations (3), (4a), (5) &(6) numerically, seeking a coupled dynamic 473 

steady-state solution for contact stresses c and c
 and contact temperature Tc,

 by iterative 474 

solutions using a Matlab subroutine that we wrote.  475 

In our code the solution converges from the same reason that we propose a dynamic 476 

steady-state: Negative feedbacks ensure that steady-states in friction and temperature 477 

are coupled and are reached simultaneously. if c rises it increases Tc via shear heating 478 

(eqn 5). The increase in Tc reduces c via prefactor a’, in eqn (3d). The reduction in c 479 

then reduces shear heating and so reduces Tc in eqn (5). The reduced Tc increases c and 480 

so on.  481 
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 An important deviation from this procedure is taken at high sliding velocity, when 482 

intense shear heating produces a steady-state Tc that exceeds Tm. In this case eqn (6) 483 

gives contact stress, 	߬௖௠ , that maintains Tc= Tm while sliding at velocity V. The present 484 

analysis uses velocity V ranging between 10-11 -10 m/s, calculating steady-state Tc, c, 485 

c, and ss as function of shear velocity V for sliding quartz, using 8 different 486 

combinations of material parameters, within the range stated in Table 1. All runs were 487 

run at room temperature, T0=300K and normal stress n=5Mpa. The parameters used 488 

for each of the runs are given in Table 2. 489 

 490 

5) Results 491 

Contact temperature- The first interesting result is the steady state contact 492 

temperature, Tc, versus sliding velocity, shown in Fig 4. All runs show three regimes of 493 

contact temperature behavior with similar transitions between regimes: at V smaller 494 

than a critical thermal velocity Vt ~10-5 -10-4 m/s, no substantial shear heating occurs, so 495 

Tc ~T0. For V> Vt, marked heating occurs. At a higher, second critical velocity, Vm=10-3 496 

-10-2 m/s, Tc reaches Tm, the melting temperature. The very sudden and precipitous 497 

temperature rise at the contact scale between Vt & Vm explains why Vm is essentially 498 

independent of the value of the melting temperature, Tm (on a curve like that a 499 

difference in melting temperatures matters little), as seen by comparing runs 5&7, 500 

which have different Tm, yet similar Vm. The critical velocities, Vt & Vm, depend 501 

primarily on thermal diffusivity and contact size: runs 1,3,6&8 show delayed onset of 502 

heating and melting due to small contacts and/or high thermal diffusivity (see Table 2).  503 

 504 

Table 2: summery of variables used in runs. ar & br stand for a & b (eqn 4) 505 

calculated at room temperature.  506 

 507 
Run  1 2 3 4 5 6 7 8 

Variable  

v(10-29m3) 5 6.8 5 5 5 5 5 5 

s(10-29m3) 6.8 6.0 7.8 7.8 7.8 6.8 7.8 7.8 

Qv(KJ/mol) 240 260 230 240 230 240 230 150 

Qs(KJ/mol) 260 210 280 270 280 260 280 185 

B 0.8 0.9 0.9 0.89 0.9 0.8 0.9 0.75 



 19

tcr(s) 104 2 1 2 1 104 1 102 

Tm(K) 1270 1670 1270 1370 1670 1270 1270 1370 

0 (m
2/s) 1 1 2 1 1 2 0.8 1 

d (m) 1 10 1 10 10 1 15 3 

ar 0.0085 0.0121 0.0077 0.0075 0.0077 0.0095 0.0077 0.0142 

br 0.0115 0.0108 0.0104 0.0094 0.0104 0.0129 0.0104 0.0233 

ar - br -0.003 0.0013 -0.0027 -0.002 -0.0027 -0.0034 -0.0027 -0.0091 

 508 

Contact stresses - The combined effect of the parameters in Table 2, and the imposed 509 

slip rate V controls the value of contact scale stresses, c & c, shown in Fig 5.  510 

The range of “play” in the values of the material parameters, especially the activation 511 

energies that may be differ by 100% between runs, and the value of B, which varies by 512 

20% between runs, allows for a range of stress values to emerge, shifting curves up and 513 

down. Note the low values of c & c in run8, due to the lower activation energies used 514 

in this run, representing the lower end of the allowed range (see Tables 1& 2).  515 

Slip rate controls contact stresses both via simple velocity effects and via shear-516 

heating effect on contact temperature: At low V, contact shear stress c (Fig 5a) is 517 

always velocity-strengthening (abbreviated hereafter as V-s), due to the logarithmic V-s 518 

in eq(3b). However, once thermal effects kick in, for V>Vt (see Fig 4), c becomes 519 

velocity –weakening, abbreviated hereafter as V-w. V-w here is due to the increasing a’ 520 

coefficient in eqn(3) that multiplies the negative log term. The linear increase of a’ with 521 

Tc overwhelms the log dependence on V. Melting onset, at V=Vm, occurs after a 522 

significant thermal softening already occurred in the regime Vm>V>Vt. For V>Vm c 523 

drops to compensate for the fact that Tc is maintained at the constant Tm, following eqn 524 

6.  525 

The behavior of contact normal stress, c, (Fig 5b), and the correlated real contact area 526 

Ar (Fig 5c), is slightly different than that of c: c is V–s at very low V. The contact 527 

lifetime, t=d/V, decreases, hence the contact convergence and hence Ar decreases with 528 

increasing V. The decreasing contact area increases c. This trend continues as long as 529 

contact life time, t, is longer than the cutoff-time, tc. Once the time contacts spend 530 

rubbing against each other is smaller than tc, i.e once t<tc, or in other words once V > 531 

d/tc (the theoretical prediction for this point is marked by arrows in Fig 5b), the 532 

logarithmic growth of contacts (eqns (3a) & (3c)) becomes negligible, and c saturates 533 
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to ߪ௖଴. However, since tc is thermally activated, at V>Vt shear heating may reduce tc (eq 534 

3e). If tc decreases enough, it may become again smaller than contact lifetime t 535 

(overwhelming the t decrease that takes place with increasing V), so that the log term in 536 

eqns 3a again becomes significant, slightly reducing c, a trend seen in runs 7,5,4, and 537 

2. In our other runs the initial cutoff time at room temperature, tcr, was large, so tc didn’t 538 

drop below t. As V is increased further, melting is reached, and for V>Vm, we assume c 539 

=const, so that c saturates again.  540 

	541 

Friction coefficient- The ratio between c and c provides the steady state friction 542 

coefficient, ss, as function of V, plotted in Fig 6. Our model predicts three or four main 543 

regimes of friction shown in Fig 6:  544 

1) At slow shear rate, when shear heating is negligible, (V< Vt,) friction is either V-545 

w or V-s, and follows R/S behavior. Whether friction is V-w or V-s in this regime 546 

depends on slight differences in parameter values: If contact normal stress, c, increases 547 

faster with V than contact shear stress c does, the resulting ratio c/c produces V-w, 548 

and vice versa.  549 

This behavior can either extend up to V=Vt, or can in some cases transition to a sub-550 

regime within the R/S regime. This sub-regime is characterized by a local minimum of 551 

friction within the R/S regime, at V~d/tc. We term this value d/tc the cutoff velocity of the 552 

contact. Such a local minimum at V~d/tc is seen in Run8 of fig 6, with a zoom shown in 553 

fig 7. This is the behavior that produces the maximum in friction at intermediate V. It 554 

does not show much in DiToro et al data (our fig 1), but is common in various materials 555 

and under various conditions, as shown by Bar Sinai et al (2014), and Spagnuolo et al 556 

(2016) (monzonite in their fig 2). This saddle-like behavior is analyzed in the Discussion 557 

section.  558 

3) At intermediate shear rate, Vmelt>V>Vt, shear heating softens a’, b’ and tc in eqn 559 

3. This regime is always V- w, since c (fig 5a) drops steeply with V, while c is only 560 

mildly V-w (fig 5b), if at all.  561 

3) At high shear rate, V> Vmelt, melting occurs, producing strong V-w, following eqn 562 

(6) , where c drops as 1/√ܸ	.  563 

 564 
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To summarize the results, the simulations from fig 6 are re-plotted in Fig 8 together 565 

with the experimental data for quartzose rocks from Fig 1 (from DiToro et al, 2011). 566 

The different model runs, which use a range of reasonable material parameters (as 567 

discussed in section 3, and summarized in Tables 1&2) predict and envelope the various 568 

behaviors observed experimentally in steady state sliding in quartz sandstone 569 

(Dieterich, 1978), granite (Dieterich, 1978, DiToro et al 2004), Tonalite and tonalitic 570 

cataclasite, (DiToro et al 2006a), and novaculite (DiToro et al 2004, 2006b; Hirose and 571 

DiToro, unpublished, as reported in DiToro et al 2011). Our model predicts: 572 

1) The velocity weakening or velocity strengthening behaviors observed 573 

experimentally in the R/S regime. 574 

2) In some cases, a minimum in friction occurs, followed by a peak.  575 

3) The maximum peak in friction sometimes seen in experiments, here seen in the 576 

granite experiment of DiToro et al (2004) at V~ 10-4m/s. In the model the position of 577 

the peak depends on the parameters used. In particular, the peak is terminated at the 578 

velocity for onset of thermal-effects, Vt, which is controlled mostly by thermal 579 

diffusivity and contact sizes, as explained above for Fig 4.  580 

4) Abrupt thermal softening at V> Vt ~10-4 m/s. The transition to thermal softening 581 

is well fit by our model, as is the softening itself. Thermal softening is due to the 582 

efficient shear heating at V>Vt.  Vt is about 100 times smaller than the velocity required 583 

to cause melting of contacts (Vm). The transition to melting at Vm continues the overall 584 

velocity weakening trend.   585 

 586 

 587 

6) Discussion  588 

The new model for steady-state friction is conceptually simple: it assumes thermally 589 

activated creep of contacts, under coupled steady-state stress and thermal conditions 590 

during sliding. The micro-mechanics model builds upon the works of  e.g. Putelet et al 591 

(2011), Rice et al (2001), Nakatani & Scholz (2004b), Bowden & Tabor (1964), 592 

Baumberger & Caroli (2006), Brechet & Estrin (1994) and others, but adds thermal 593 

effects, relaxes the non-physical assumption of constant yield stress ߪ௖଴, and allows the 594 

activation energies and activation volumes to differ between shear and normal creep 595 

processes. The last assumption is crucial to capture the physics, as discussed at length 596 

below. We also added a physical constraint to represent melting, assuming that once 597 
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contacts reach melting they reduce stresses to remain at Tm. Thus steady-state is still 598 

maintained during melting, which means the molten zone is not widening with slip. We 599 

are not clear that this is a good assumption, but the focus here is not on melting, so we 600 

leave this for future work.  601 

 602 

i. model results fit experiments well. 603 

Since all parameters are obtained independently, or imposed externally, only a narrow 604 

‘play’ range was left for model fitting. Despite rather tight constrains on parameters, our 605 

model fits well and explains friction under a large range of velocity, temperature and 606 

stress. In particular, we found a promising agreement between our simulations and:  607 

1) Low temperature and normal stress experiments from tonalite, novaculite, quartz 608 

and granite (as complied by DiToro et al 2011). The fit using the range of parameters is 609 

seen in Fig 8.  610 

2) High normal stress and low slip rate experiments on granite (Blanpied et al, 1995) 611 

that find a pronounced thermal weakening and strong positive slip-rate dependence 612 

above a critical temperature, see companion paper, Paper2. 613 

3) A brittle-ductile transition that depends on slip rate and ambient temperature, as 614 

seen by Chester and Higgs, (1992). See companion paper, paper2.  615 

 616 

ii. The physics of friction as revealed by our model 617 

The a & b pre-factors of eqn (4b) (which are the a’ & b’ of eqn (3) multiplied by 0), 618 

have a definite physical interpretation in this model. The cutoff time also emerges as a 619 

physical parameter, which controls transitions between frictional regimes.  620 

 621 

a) The a term: The a ln(V/Vsmax) term arises from the c equation, eqn 3b. This term 622 

is always negative since V < Vsmax. Since at low velocities a is a positive constant and 623 

ln(V/Vsmax) becomes less negative with increasing V, c increases with V at low 624 

velocities, hence we call this a term the viscous term. At higher velocities, where Tc 625 

increases, a also increases accordingly (eqn 4c), resulting in thermal–weakening of c, 626 

as explained below.  627 

 628 

b) The b term is easier to understand in terms of the real area of contact rather than 629 
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from c. The b ln(1+d/(Vtc)) in eqn (4b) is always positive, leading always to growth of 630 

real area of contacts. Thus we call this b term the contact-area growth term. Increasing 631 

V reduces the growth of Ar because the load lifetime on contacts is reduced. When V>> 632 

d/tc, then ln(1+d/Vtc) 0. An increase in V however also increases Tc, with two effects: 633 

Tc increases b, and decreases cutoff time tc (eqn 3d). The increase in b is insignificant 634 

when V>> d/tc, since it multiplies the ln term that is almost 0. Thus when V>> d/tc 635 

contact Ar & c are expected to saturate, as seen in Fig 5. A significant decrease in tc 636 

with increasing Tc may however effect contact growth with increasing V and by this 637 

slightly decrease c and increase Ar with increasing V (see figs 5b & 5c). Whether 638 

significant enough reduction occurs in tc as Tc increases, depends on the activation 639 

energy for tc, which in turn depends on the process that occurs there, be it dislocation 640 

glide, stress corrosion, pressure solution or another creep process. For quartz our results 641 

suggest that the contact area growth term is only significant at slow V.  642 

 643 

c)  The cutoff-time, tc, has a physical meaning that may be understood 644 

from evaluating the differential equation for contact normal stress, eqn (2c), at time t=0 645 

and plugging in the definition of tc from eqn (2d), which gives: 646 

								ሺ7ሻ																							 
ௗఙ೎
ௗ௧
ቚ
௧ୀ଴

ൌ െܾ′
ఙ೎
బ

௧೎
  647 

Eqn (7) says that ݐ௖ modulated by ܾᇱ	is the combination of thermodynamic parameters, 648 

given by eqn (2e), that controls the characteristic time for contact convergence and 649 

growth, at the time of contact formation (t=0). Since ݐ௖ is thermally activated (eqn 2e), 650 

the contact area growth rate, the rate of change in normal stress, and the rate of contact 651 

convergence are all thermally activated as well.  652 

In addition to its physical meaning, the cutoff time is a crucial parameter in controlling 653 

transitions between friction-velocity regimes, as shown in Ben David et al (1998), and 654 

Marone (1998). This is also shown by our model (see discussion also in section 6.g): at 655 

slow sliding (V<d/ݐ௖) contacts may grow significantly during their lifetime. At faster 656 

sliding contact area saturates. Thus, when sliding rate exceeds d/ݐ௖, we expect a 657 

transition from (a-b) controlled friction to a friction that is controlled only by the a 658 

(viscous) parameter, and the b term to be negligible. It is shown below that V=d/ݐ௖ 659 

indeed marks such a transition in the friction-velocity curve. 660 

 661 
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d) Rate and state friction is captured and predicted by our steady -sliding model. 662 

Our model, provided by eqn (4b), can be viewed as generalized R/S description, that 663 

should be coupled with steady-state contact temperature to predict the higher velocity 664 

friction. Eqn (1), the usual way that R/S is written in its steady-state form (e.g. Scholz, 665 

1998), is obtained as the low-velocity limit of this generalized steady-state R/S, when 666 

V<<d/tc. Under this approximation ln(1+
ௗ

௏௧೎
ሻ	is approximated as ln(

ௗ

௏௧೎
ሻ,	the constants in 667 

eqn (4b) can be rearranged, and eqn (1) can be derived.  668 

 669 

e) The three slip regimes and the critical velocities: Our simulations predict three 670 

sliding regimes as function of slip rate, where the transition between regimes is set by 671 

two, and sometimes three, critical slip rates, that mark transitions in behavior. The first 672 

critical velocity occurs at V~d/tc, the “cutoff velocity” of the contact. When sliding 673 

faster than the cutoff velocity, contact growth is insignificant, and the b term is 674 

negligible. The 2nd critical velocity, Vt, is the velocity above which substantial shear-675 

heating, and thus strong thermal weakening, takes place. The third critical slip rate is the 676 

one above which contacts melt, Vm. We find here that Vt ranges between 10-5-10-4 m/s, 677 

and Vm ranges between 10-3-10-1 m/s, depending on model parameters, mainly thermal 678 

diffusivity and contact size (see Fig 4 and Table 2). We next analyze friction 679 

dependence on velocity for these separate regimes.  680 

 681 

f) Slow sliding- The (a-b) term and the friction-velocity dependence: Friction 682 

may be approximated in the slowest sliding regime, V<<d/tc, by approximating 683 

ln(1+
ௗ

௏௧೎
ሻ	as ln(

ௗ

௏௧೎
ሻ. Then friction takes the form of eqn (1):  684 

(8a)  ߤ௦௦~ߤ଴ ൅ ܽ ln ቀ
௏

௏ೞ೘ೌೣ
ቁ െ ܾ ln ቀ

௏௧೎
ௗ
ቁ,	 685 

In this regime the two behaviors of R/S, namely V- weakening and V- strengthening, 686 

arise in our model when applying small differences in thermodynamic parameters, within 687 

the material-allowed range. The physics behind these two velocity dependencies are 688 

easily explained: Friction is the ratio of contact shear stress, c and contact normal stress, 689 

c. Since both c and c increase logarithmically with slip rate in this regime (figure 5), 690 

V-w (or V-s) of friction arise when c increases with V slower (or faster) than c does 691 
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(Fig 6). To see how V-s or V-w depend on material parameters, we calculate the 692 

dependence of ߤ௦௦ on V: 693 

              (8b) 
డఓೞೞ
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ൌ ܽ െ ܾ ൌ ଴ܴߤ ௖ܶ ቀ
ଵ		

ொೞ
െ ଵ

஻ொೡ
ቁ 694 

where we used a&b from eqn (4c). Eqn (8b) predicts that when (a-b)>0 friction is V-s, 695 

and when (a-b)<0 friction is V-w. This prediction agrees with the standard 696 

interpretation of R/S laws (Marone 1989), and we term this regime the R/S regime. The 697 

predictions of eqn (8b) also agree with the observations of Ikari et al (2011, 2016) who 698 

find that (a-b) depends linearly on 0 (note that although Ikari et al work on carbonates 699 

eqn (8b) is not material specific). In addition, in their Fig 2c, Ikari et al (2016) also find 700 

that a & b have different linear dependence on 0, which according to eqn (4b) results 701 

from the difference in values between	ܳ௦	&	ܳܤ௩. Eqn (8b) suggests that the difference 702 

between 	ܳ௦	&	ܳܤ௩ is a necessary condition for (a-b) to differ from 0, i.e. for V-s or V-703 

w behavior to emerge. We stress that without a difference in activation energies and/or 704 

the existence of parameter B, (which ensures thermally activated tc), the whole R/S 705 

behavior and also the possibility of a V-w sliding instability would not exist. Note also 706 

that eqn (8b) predicts a temperature dependence of (a-b): increasing temperature will 707 

enhance V-w by increasing the absolute value of (a-b). This prediction has implications 708 

for the depth of earthquake nucleation, which we shall leave for future studies. Table 2 709 

calculates a, b & a-b at room T for each run.  710 

 711 

g. intermediate slip- the transition to velocity strengthening at V>> d/tc. The 2nd 712 

sliding regime emerges when the validity of the approximation in R/S eqn 8 breaks 713 

down, once V exceeds the cutoff velocity d/tc. The break-down can be seen from Fig 6:  714 

Plugging the values of (a-b) from Table 2 in eqn 8, predicts that all runs in Fig 6 will be 715 

V-w, except for Run 2, that is predicted to be V-s, which it is. Yet, not all runs in fig 6 716 

are V-w: runs 3, 6 & 8 are V-w at very low V, but transition to V-s, still within the low 717 

V regime, despite the fact that their (a-b)<0 (i.e. despite ܳܤ௩ െ ܳ௦ ൏ 0ሻ . This 718 

transition from V-w to V-s is seen more clearly in the zoom into run 8, in fig 7, where a 719 

saddle-like behavior of friction is seen. The minimum in friction of runs 3, 6 & 8 arises 720 

when the condition under which eqn (8b) was derived is not met any more (the value of 721 

d/tc is indicated by arrows in fig 5b). Instead, for V >> d/tc, one should approximate eqn 722 

(4b) by Taylor expanding ln(1+
ௗ

௏௧೎
ሻ	ܽݏ 	 ௗ

௏௧೎
	, so that friction in this regime is: 723 
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ሺ9ܽሻ	ߤ௦௦~ߤ଴ ൅ ܽ ln ൬
ܸ

௦ܸ௠௔௫
൰ ൅ ܾ

݀
௖ݐܸ

, 

The size of the a & b terms can be evaluated as follows: on the one hand for V<0.1 724 

m/s |ln ቀ
௏

௏ೞ೘ೌೣ
ቁ | ~10, on the other hand, in this regime 

ௗ

௏௧೎
≪ 1. Since a is of the same 725 

order as b (Table 2), then the b term in eqn 9a is negligible relative to the a term, and 726 

eqn (9a) can be approximated as  727 

ሺ9ܾሻ	ߤ௦௦~ߤ଴ ൅ ܽ ln ൬
ܸ

௦ܸ௠௔௫
൰ 

Which means that contact growth is not important in this regime, as is also seen in Fig 728 

5a&5c, which show contact stress and area saturate for V>> d/tc. 729 

 In this regime, from eqn (9b), 
డఓೞೞ
డ୪୬	ሺ௏ሻ

ൌ ܽ, which is always positive. Thus friction is 730 

always V-strengthening in this intermediate regime of Vt>V > d/tc (I.e. sliding rate that 731 

is still slow enough to not cause appreciable shear heating effects), independent of the 732 

sign of (a-b). Physically this is because contacts don’t have time to grow when the 733 

velocity exceeds the cutoff velocity d/tc, and in absence of thermal effects (in this 734 

regime of still relatively slow slip), so only the logarithmic V-s of the viscous term of c 735 

prevails. This regime however only exists under certain conditions. For example, runs 736 

4,5 &7 don’t show a V-s portion of the curve because the window between d/tc <V<Vt 737 

shrinks in these runs (they have small tc, large d, and relatively small Vt).  738 

 Cases where this regime exists, as in run 8 (fig 7), show weakening at very low slip 739 

rate, followed by V-s at moderate slip rates (when V > d/tc), and a transition to thermal 740 

softening at higher V, when V > Vt. A similar saddle-like behavior, causing a peak in 741 

friction, was experimentally observed in different materials (e.g. Weeks and Tullis, 742 

1985; Shimamoto, 1986; Kilgore et al., 1993; Heslot et al., 1994), and its consequences 743 

have been discussed theoretically (Noda 2008, Bar Sinai et al, 2014), yet here we 744 

suggest the physics behind it.  This issue of saddle-like behavior of friction, despite a-745 

b<0, and despite relatively slow sliding (no shear heating yet) is important, as it reveals 746 

a basic behavior of friction that was largely overlooked in previous works. The saddle-747 

like behavior of friction stems from the control of d & tc on a cutoff velocity, and may 748 

be overlooked if one concentrates solely on the sign of a & b.  749 

 750 

h. The thermal softening regime at V>Vt: In the case of even faster slip rate, when V 751 
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exceeds the thermal velocity Vt, the contacts heat up. At this fast velocity, certainly the 752 

condition of V > d/tc is met, and friction may be approximated by eqn 9b. But the 753 

derivative of friction is different now since it must include changes in temperature:  754 

ሺ10ሻ	
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To obtain the last term on the RHS we used 
డ ೎்

డ௏
ൌ ೎்ି బ்

ଶ௏
 from eqn (5), and 

డ௔

డ ೎்
ൌ755 

௔

೎்
	from eqn (4c). From the RHS expression in eqn (10) it is easy to see that friction 756 

thermally softens in this regime: the 1st term on the RHS is due to the regular 757 

velocity strengthening that is contributed by the viscous a term, and is always 758 

positive. The 2nd term on the RHS comes from thermal softening. It is negative and 759 

much larger than the 1st term, causing overall softening. This is easily seen by 760 

plugging values: e.g. for V=0.01m/s, Tcൎ250C (Fig 4). Plugging ௦ܸ௠௔௫ from Table 1 761 

shows that the 2nd term is negative, with a magnitude that is 2.5 time the 1st term. In 762 

short, thermal softening occurs because the thermal effects of the a term overwhelm the 763 

velocity strengthening (viscous) effects of this a term.   764 

i. The melting regime at V>Vm: when contacts melt, eqn 6 predicts that c drops as 765 

1/√ܸ	. This is a consequence of the coupled steady-state calculation of T and stresses. 766 

This drop is slower than the c~1/V predicted by the flash melting model of Rice 2006. 767 

The difference is since the flash melting model does not be produce steady-state. At this 768 

point we can’t say if steady-state is indeed achieved at melting conditions. However, 769 

since melting is not the main issue of this study, we simply state this difference.  770 

	 	771 

iii. Constraining the parameters:  772 

The original B&T paper (1950) concluded that because friction is c/c, the ratio of 773 

strength properties of the same material, the value of the friction coefficient should be 774 

independent of material. They also believed that c & c both follow the same T 775 

dependence and so friction should be independent of T over a wide range of T. In 776 

geology the 1st conclusion is known as Byerlee’s law, which applies to all geological 777 

materials except for the laminar materials like phylosilicates (as was also recognized by 778 

B&T, 1964, chapter XI), which have unusual frictional properties.  779 
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The 1st conclusion of B&T (1950) agrees with our prediction: Qs, BQv, 780 

Ωௌ	&		Ω௏	determine ssvia c & c, and the absolute value of these depend on material. 781 

However, their ratio should depend mainly on process and not on material. We will 782 

discuss the ambient temperature effect on friction at low velocities (in relation to the 783 

B&T 2nd conclusion) in paper2.  784 

We have constrained parameter values for our model based on thermodynamics 785 

measurements, as explained in section 3. Yet these parameters have a range of 786 

permissible values, as noted in Table 1&2 and seen in Figs 6&8. One may further 787 

constrain these parameters within the allowable range, using experiments of friction and 788 

velocity trends. For this we concentrate on the friction coefficient at the limit of slow V, 789 

V<<d/tc, derived in eqn (8a). In this very slow velocity regime, friction is V-w if (a-790 

b)<0 , which requires 	ܳ௦ ൐  ௩. Since we know quartz is generally V- w, eqn 8 791ܳܤ	

implies that in quartz the surface activation energy Qs should be larger than BQv, the 792 

volumetric activation energy multiplied by constant B. We used this constraint in all 793 

runs, except for run2 (which we added for exploratory purposes). Another constraint, 794 

discussed in section 3, is that Qv and Qs in quartz are constrained by independent 795 

measures reported in the literature to be between 150 and 280 KJ/mol.   796 

One may constrain Qs, B & Qv further, by using experimental data of steady-state 797 

values of (a-b). Marone (1998) compiled experiments on bare rock and gouge and finds 798 

steady-state values of (a-b) for quartz, granite, and novaculite between 0 and -0.006. 799 

Since from eqn(4b) ሺܽ െ ܾሻ ൌ ଴ܴߤ ௖ܶ ቀ
ଵ		

ொೞ
െ ଵ

஻ொೡ
ቁ, this constrains the difference between 800 

1/Qs and 1/(BQv) to be at most -0.006/ሺߤ଴ܴ ௖ܶሻ. Using room temperature, and assuming 801 

଴ ~ 1, this constrains ቀߤ
ଵ		

ொೞ
െ ଵ

஻ொೡ
ቁ ൒ െ2.4	10ି଺,	which predicts ܳܤ௩ ൒

ொೞ		

ଵାଶ.ସ	ଵ଴షలொೞ
 . We 802 

use this constraint in all runs expect for run8. Thus our runs show (a-b) values within 803 

the experimental range reported by Marone (1998) in all runs except run8, which has 804 

larger difference between ቀ
ଵ		

ொೞ
െ

ଵ

஻ொೡ
ቁ and so predicts a somewhat larger (a-b) (see Table 805 

2). 806 

An additional constraint is given by the value of the base friction ߤ௕௔௦௘ (the part of 807 

friction that does not change with V), which is defined when we rewrite eqn (8a) as  808 

௕௔௦௘ߤ	~௦௦ߤ ൅ሺܽ െ ܾሻ lnሺܸሻ, with ߤ௕௔௦௘~ߤ଴ ൅ ܾ ln ቀ
ௗ

௧೎
ቁ െ ܽ lnሺ ௦ܸ௠௔௫ሻ. The requirement 809 

that ߤ௕௔௦௘ of quartz will be around 0.7-0.8 under slow sliding and room T, dictates a 810 
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relationship between model parameters. In particular the fact that a&b are already 811 

constrained, as discussed in the previous paragraph, now dictates a relationship between  812 

௦ܸ௠௔௫,  ݀.  813	&	௖ݐ

An additional check for the parameters of the model is offered by the value of the real 814 

contact area, as seen in Fig 5c. In agreement with the experiments of Kilgore and 815 

Dieterich (1994), we obtain that the value of the real contact area is about 10-3 of the 816 

nominal area at room temperature and low normal stress. The change of Ar with V, and 817 

its constancy for V exceeding d/tc, can be tested in future experiments.  818 

Finally, the parameters therm and d are independently constrained, as discussed in 819 

section 3.  However, they are checked by Vt, the velocity at which thermal weakening 820 

initiates. Vt is observed by experiments (Fig8) to be around 10-4- 10-3. This constrains 821 

the ratio d/therm from eqn(5), assuming we know Dth from experiments.  822 

 823 

The importance of the difference between volume creep and shear creep.  824 

From section 6.ii.f and eqn 8, it is clear that the values and differences between Qs & 825 

Qv, the activation energies that control contact convergence and surface shear 826 

respectively, are important for fault stability. The difference between shear and volume 827 

creep processes has not been dwelled upon previously, yet eqn 8 shows that it controls 828 

the V-s or V-w behavior of friction, and is essential for the emergence of R/S behavior. 829 

Such a differences in parameters may arise from different processes controlling contact 830 

growth and shear, or from variations in structure as function of distance from contact, as 831 

discussed in sec. 3. The values of Qs & Qv are not accurately known at present. Possible 832 

ways to measure separately Q (and for surface and volume processes, involve micro-833 

indentation hardness experiments at varying temperature to extract the b dependence on 834 

T0. Qv may then be extracted as function of t and T, following eqn (3a). One can also 835 

measure a & b as function of temperature to extract the activation energies, as in Ikari et 836 

al (2011, 2016). In that case fitted parameters at low V & T are used to model the full 837 

phase space, namely the non-monotonic friction as function of high V, T and n. A good 838 

fit across the full phase space, as obtained here and in paper 2, lends confidence to the 839 

validity of the model.  840 

 841 

iv. Plastic vs brittle behavior of contacts 842 
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We have assumed that deformation at contacts, for what otherwise are considered 843 

brittle materials, is by low temperature plastic flow. Other models of rock friction have 844 

assumed brittle fracture at the contacts (e.g. Beeler, 2004). Such models produce 845 

similar results to ours because, as mentioned earlier, the velocity of sub-critical crack 846 

growth depends exponentially on stress, similar to our eqn. 2a.  Our assumption of 847 

contact scale plasticity is based on the observation that for such materials, under static 848 

and moving loads, well-formed indentations and wear grooves are formed concordant 849 

with the indenting styli (Brace, 1963; Engelder and Scholz, 1976). This is explained 850 

because the high hydrostatic pressures that exist beneath contacts inhibits brittle 851 

fracture there (Bowden and Tabor, 1964 p.349; Evans and Goetze, 1979). 852 

The wear detritus from rock friction is often dominated by angular fragments forming 853 

cataclasites.  This indicates an important role for brittle fracture.  The indentation 854 

experiments of Brace (1963) produced cone cracks surrounding the indents and in the 855 

sliding styli experiments of Engelder and Scholz (1976) partial cone cracks were 856 

observed at the trailing edge of the styli tracks.  Such cone cracks are predicted by the 857 

high tensile stresses that exist at the edges of contacts [Johnson, 1985 p. 94; Lawn, 858 

1967].  Thus, while plastic deformation at the contacts is the controlling process for 859 

friction, the growth of such cone cracks will lead to the plucking out of contacts, 860 

which will volumetrically dominate wear. 861 

 862 

 Conclusions: 863 

 864 
1. A physics-based model is proposed, based on the assumption of contact creep, to 865 

quantitatively predict steady-state friction. The steady state is both of contact 866 

temperature and stresses at contacts. The model generalizes R/S friction and finds its 867 

physical basis. The a&b parameters emerge as viscous & contact growth terms 868 

respectively.  869 

2. The model explains and predicts the general observations of friction, that are not 870 

material specific: 871 

A. High friction and 2nd order velocity dependence at low V (traditional R/S 872 

friction law behavior).   873 

B. Material dependent peak at intermediate velocity, just before onset of thermal 874 

effects.  875 
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C. Abrupt weakening above a critical velocity, termed Vt for thermal. At this 876 

velocity shear heating becomes meaningful. Vt is ~100 times slower then the 877 

velocity that produces contact melting.  878 

D. All material dependencies result from variations in material properties that 879 

may be independently determined.  880 

3. R/S in its usual form, eqn (1), is shown to be the low-velocity limit of our model, 881 

representing an end-member behavior on a continuum of the same physical behavior. 882 

Our model predicts two more experimentally-observed regimes for frictional behavior, 883 

beyond the conventional R/S. The onset of the 2nd regime (this regime is not always 884 

present) is dictated by the cutoff time, tc: When slip rate exceeds d/tc, contacts cant grow 885 

appreciably during sliding. This leads to contact area saturation and velocity 886 

strengthening. This reveals the importance of the cutoff time tc for friction. The 3rd 887 

regime occurs at even faster sliding, when shear heating causes thermal softening. 888 

Thermal softening is achieved via thermal reduction of the viscous a term.  889 

4. The model predicts the importance of the difference between activation energies 890 

for shear and normal creep processes. The difference between these energies controls 891 

controls whether friction is velocity weakening or strengthening in the Rate &state 892 

regime.  893 

5. Applicability of this model to high ambient temperature and stress will be 894 

demonstrated in paper2.  895 

 896 
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 1156 

 1157 
Fig 4: Our model calculated steady -state contact temperature (Tc) for quartz/granite sliding at 1158 

room temperature and n=5Mpa, as function of slip rate V. We present 8 runs, each using 1159 

different parameter values within the independently predicted range (see Table 2). For low V, Tc 1160 

remains at T0, the ambient T. Increasing V brings about two transitions: at Vt & at Vm. Vt  is the 1161 

velocity at which marked heating begins, ~10-4 m/s. At Vm, which varies between 10-3-10-1 m/s, 1162 

contacts reach melting temperature, Tm, capping the curves at Tc= Tm for any V> Vm. The values 1163 

of the transition velocities Vt & Vm depend primarily on thermal diffusivity and contact size: Vt 1164 

and Vm in runs 1,3,6&8 are high since these runs have small contacts and/or high diffusivity. 1165 

Note that runs 5,8,4 &2 used higher Tm, to illustrate the negligible effect the the value of Tm has 1166 

on Vt & Vm. 1167 

 1168 

 1169 

 1170 
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 1171 
(b) 1172 

 1173 
(c) 1174 

 1175 

Fig 5: Contact shear, c, (a) and normal stress, c (b) as function of V, at T0=30C, n=5Mpa. 1176 

Onset of melting marked by red circles. (a) For V < Vt (~10-5-10-4 m/s), c is V-strengthening in 1177 



 43

all runs due to the log term in eq (3b). For V > Vt, c becomes strongly V-weakening since 1178 

thermal effects on coef a override the V-strengthening of the log term in eq (3b) (see also 1179 

discussion and eqn 10). After melting c continues to drop. (b) At low V, c is V-strengthening 1180 

due to the increasingly limited time for contact growth during sliding (eq 3a). V-strengthening 1181 

continues as long as contact life time, t=d/V, exceeds the cutoff time, tc. At V > d/tc (this point 1182 

marked by arrows for each curve),  contact lifetime is smaller than tc, so the log term in eq 3 1183 

becomes negligible, and c saturates. Constant c prevails unless shear heating reduces tc 1184 

enough to make again t> tc. If this occurs, c becomes V-weakening, as in curves 7,5,4, and 2. 1185 

After melting c is assumed in the model to saturate and become constant. (c) Real contact area 1186 

(normalized by nominal contact area) changes appreciably only for slow V, and remains 1187 

constant at V>> d/tc. At this point the b term becomes negligible (see eqn 9).  1188 

 1189 

 1190 

Fig 6: model predictions for steady-state friction coefficient, ss, in quartz and granite as 1191 

function of slip-rate, V, for all runs in Table 2. Three main regimes of behavior are seen: At low 1192 

V (V<Vt, where Vt is thermal velocity, blue region), ss, is temperature-independent and follows 1193 

the traditional rate and state behavior (R/S). Here ss may be either V-weakening or V-1194 

strengthening, depending on small variations in thermodynamic parameters. At high enough V 1195 

(Vt<V<Vm, where Vm stands for melting velocity, yellow region), thermal effects kick in (see Fig 1196 

4), causing a marked V-weakening of friction. In some parameter regimes (e.g runs 3 &8), 1197 

thermal-weakening is preceded by a friction minimum followed by a peak in friction, as 1198 

observed sometimes in experiments (Fig 1). Fig 7 zooms into this regime in run8.  At high V 1199 

(red region) a transition to contact melting occurs (Fig 4), with further friction reduction.  1200 

R/S regime
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  1201 

 1202 

 1203 
fig 7.  Friction and real contact area from Run 8. This run exemplifies a situation when 1204 

velocity weakening at geological slip rates, due to a-b<0, transitions to velocity strengthening at 1205 

slightly higher slip rates (when V>d/tc), due to the role that tc plays in the velocity dependence 1206 

of ss.   1207 

 1208 
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 1209 
 1210 

Fig 8: Our modeling results for steady-state friction, re-plotted from Fig 6, but now overlaid 1211 

on top of the quartz	sandstone, granite, novaculite & tonalite experimental results that were 1212 

presented in Fig 1 (from DiToro et al 2011).  Our physics-based model results show excellent fit 1213 

to experiments at all velocities, and even predict the friction peak that is observed in some cases 1214 

before the onset of melting. Experimental data (in symbols) is from shear experiments in 1215 

Tonalite and tonalitic cataclasite (DiToro et al 2006a), Novaculite (DiToro et al 2004, 2006b; 1216 

Hirose and DiToro, unpublished, reported in DiToro et al 2011), quartz sandstone (Dieterich, 1217 

1978), and granite (Dieterich, 1978, DiToro et al 2004). 1218 
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