REACTIVE TRANSPORT MODELING: AN INTRODUCTION

Jesus Carrera

GHS, IDAEA CSIC (Spanish Research Council) Barcelona, Spain

Contents

- The two basic ingredients
- Example: role of mixing
- Transport with eq. Reactions
- Generalization
- Mixing and spreading
- Applications

Ingredient 1: solute transport

- Advection: $\mathbf{v} = \mathbf{q}/\phi$ (q proportional to K)
- Dispersion: Proportional to: α q
- Reactions
- Mass Conservation

$$\phi \frac{\partial c}{\partial t} = \nabla (\mathbf{D} \nabla c) - \mathbf{q} \nabla c + f - r$$
Porosity
Dispersion
Coeff.
Water
Reactions

Written compactly $\mathcal{L}(\mathcal{C}) = -\mathbf{q} \cdot \nabla \mathcal{C} + \nabla \cdot (\mathbf{D} \nabla \mathcal{C})$

Ingredient 2: Chemical reactions: Stoichiometric matrix

Assume a chemical system

 $\mathcal{CO}_3^{2-} = \mathcal{HCO}_3^{-} - \mathcal{H}^+$ $\mathcal{CO}_2 = \mathcal{HCO}_3^- + \mathcal{H}^+ - \mathcal{H}_2\mathcal{O}$ $\mathcal{C}a^{2+} = \mathcal{C}a\mathcal{C}O_{3^{c}} + \mathcal{H}^{+} - \mathcal{H}\mathcal{C}O_{3}^{-}$

Let r_i be the number of moles of reactants that evolve into products for the i-th reaction

• Stoichiometric Matrix (rows: reactions; columns: species)

each species

Reaction rate: Mass balance

$$R = S^{t}r$$

Reactive transport

Reactions

 $\begin{array}{l}
 r_1 \quad CO_3^{2-} = HCO_3^{-}(-H^+) \\
 r_2 \quad CO_2 = HCO_3^{-}(+H^+) - H_2O \\
 r_3 \quad Ca^{2+} = CaCO_{3s}(+H^+) - HCO_3^{-}
 \end{array}$

Let r_i be the number of moles of reactants that evolve into products for the i-th reaction

- Transport of all species
- $\phi \frac{\partial \mathcal{H}^{+}}{\partial t} = \mathcal{L}(\mathcal{H}^{+}) r_{1} + r_{2} + r_{3} \qquad \phi \frac{\partial \mathcal{H}\mathcal{C}\mathcal{O}_{3}^{-}}{\partial t} = \mathcal{L}(\mathcal{H}\mathcal{C}\mathcal{O}_{3}^{-}) + r_{1} + r_{2} r_{3}$ $\phi \frac{\partial \mathcal{C}\mathcal{O}_{3}^{2-}}{\partial t} = \mathcal{L}(\mathcal{C}\mathcal{O}_{3}^{2-}) r_{1} \qquad \phi \frac{\partial \mathcal{C}\mathcal{O}_{2}}{\partial t} = \mathcal{L}(\mathcal{C}\mathcal{O}_{2}) r_{2} \qquad \phi \frac{\partial \mathcal{C}a^{2+}}{\partial t} = \mathcal{L}(\mathcal{C}a^{2+}) r_{3}$
 - Recall S $\mathbf{S} = \begin{pmatrix} H^{+} & HCO_{3}^{-} & CO_{2} & Ca^{2+} & CaCO_{3s} & H_{2}O \\ 1 & 1 & -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & -1 & 0 & 0 & -1 \\ 1 & -1 & 0 & 0 & -1 & 1 & 0 \end{pmatrix}$ Primary Secondary Constant Ac.

$$\frac{\partial \mathbf{c}}{\partial t} = \mathbf{M} \mathcal{L}(\mathbf{c}) + \mathbf{S}_{\mathbf{e}}^{\dagger} \mathbf{r}_{\mathbf{e}} + \mathbf{S}_{\mathbf{k}}^{\dagger} \mathbf{r}_{\mathbf{k}}(\mathbf{c}) \quad n_{s} \text{ transport equations}$$

$$S_{ea} \log c_a = \log K$$

$$r_k = r_k(c)$$

$$n_r \text{ algebraic equations}$$

Looks awful! ($n_r + n_s$ unknowns at every point) Seek tricks and/or simplifications

So... objectives of this presentation

- Is reactive transport needed?
- Can be understood?
- Can be solved efficiently?
 - ... and the answer is YES
- Do we really know how to do it? ... not quite... but getting there

Why worry reactive transport? Ex: Karst development in coastal areas

Calcite dissolution in coastal aqf.

Mixture of two calcite saturated waters may be under or oversaturated with respect to calcite

Salinity

SI & r

Speciation

Dissolution causes diffusion of CO_2 (acidity) at the freshwater end, which drives further dissolution

Sensitivity to CO_2

Reducing concentration of CO_2 at the freshwater end, causes an increase in subsaturation. Therefore, one would expect an increase in dissolution rate

However, dissolution rate is dramatically reduced

First conclusion

The interplay between transport and reactions is non-trivial.

- Saturation index calculations are needed but they fail to indicate
- 1) how much calcite is dissolved, which is controlled by mixing rate,
- 2) nor where (or under which conditions) dissolution rate is maximum.

Simulating reactive transport is needed to understand the fate of reacting solutes!

Still, isn't it too difficult?

- Yes, if using brute force
- However, a number of "tricks" are possible, depending on the type of chemical system
 - If all reactions in equilibrium (Desimoni et al, 2005)
 - If also kinetic reactions (Molins et al, 2007)
 - In general (Saaltink et al, 1998)

The basic trick: components

$$\frac{\partial \mathbf{c}}{\partial t} = \mathbf{M} \mathcal{L}(\mathbf{c}) + \mathbf{S}_{e}^{t} \mathbf{r}_{e} + \mathbf{S}_{k}^{t} \mathbf{r}_{k}(\mathbf{c})$$

Choose component matrix U, such that

$$\mathsf{US}_{e}^{\dagger}=0 \Rightarrow \mathsf{US}_{e}^{\dagger}\mathsf{r}_{e}=0$$

Then,

$$\mathbf{U}\frac{\partial \mathbf{c}}{\partial t} = \mathbf{U}\mathbf{M}\mathcal{L}(\mathbf{c}) + \mathbf{U}\mathbf{S}_{\mathbf{k}}^{\dagger}\mathbf{r}_{\mathbf{k}}(\mathbf{c})$$

Components: $\mathbf{u} = \mathbf{U}\mathbf{c}$

Linear combinations of species that remain unaltered by equilibrium reactions

 $n_s - n_r$ transport equations.

(A good choice of U allows these equations to be decoupled!)

Example

- Chemical system $CO_3^{2-} = HCO_3^{-} H^+$ $CO_2 = HCO_3^{-} + H^+ - H_2O$ $Ca^{2+} = CaCO_{3s} + H^+ - HCO_3^{-}$ • Stoichiometric Matrix $\left(H^+ HCO_3^{-} \mid CO_3^{2-} CO_2 Ca^{2+}\right)^{-1}$
 - $\mathbf{S}_{e} = (\mathbf{S}_{1}; -\mathbf{I}) \qquad \mathbf{S}_{e} = \begin{vmatrix} 77 & 7760_{3} & 60_{3} & 60_{2} & 60_{3} \\ -1 & 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & -1 & 0 \\ 1 & -1 & 0 & 0 & -1 \end{vmatrix}$
- Components matrix $S_e = (I; S_1^+)$ $U = \begin{pmatrix} H^+ & HCO_3^- & CO_2 & Ca^{2+} \\ 1 & 0 & -1 & 1 & 1 \\ 0 & 1 & 1 & 1 & -1 \end{pmatrix}$
- Components $u_1 = H^+ - CO_3^{2-} + CO_2 + Ca^{2+}$ (acidity) $u_2 = HCO_3^- + CO_3^{2-} + CO_2 - Ca^{2+}$ (Total Inorganic Carbon)

Role of components

$$\phi \frac{\partial \mathcal{H}^{+}}{\partial t} = \mathcal{L}(\mathcal{H}^{+}) - r_{1} + r_{2} + r_{3}$$

$$\phi \frac{\partial \mathcal{H}CO_{3}^{-}}{\partial t} = \mathcal{L}(\mathcal{H}CO_{3}^{-}) + r_{1} + r_{2} - r_{3}$$

$$\phi \frac{\partial \mathcal{C}O_{3}^{2-}}{\partial t} = \mathcal{L}(\mathcal{C}O_{3}^{2-}) - r_{1}$$

$$\phi \frac{\partial \mathcal{C}O_{2}}{\partial t} = \mathcal{L}(\mathcal{C}O_{2}) - r_{2}$$

$$\phi \frac{\partial \mathcal{C}a^{2+}}{\partial t} = \mathcal{L}(\mathcal{C}a^{2+}) - r_{3}$$

$$u_{1} = \mathcal{H}^{+} - \mathcal{C}O_{3}^{2-} + \mathcal{C}O_{2} + \mathcal{C}a^{2+}$$

$$u_{2} = \mathcal{H}CO_{3}^{-} + \mathcal{C}O_{3}^{2-} + \mathcal{C}O_{2} - \mathcal{C}a^{2+}$$

Components are linear combinations of species such that equilibrium r's cancel out, so that $\phi \frac{\partial u_1}{\partial t} = \mathcal{L}(u_1)$

 $\mathbf{U} = \begin{pmatrix} \mathcal{H}^{+} & \mathcal{HCO}_{3}^{-} & \mathcal{CO}_{3}^{2-} & \mathcal{CO}_{2} & \mathcal{Ca}^{2+} \\ 1 & 0 & -1 & 1 & 1 \\ 0 & 1 & 1 & 1 & -1 \end{pmatrix}$

Procedure

- 1. Define chemical system and components
- 2. Solve transport equations for components (and/or primary species)
- **3.** Speciation: Compute species concentrations from components (and/or primary species)
- 4. Substitute species back into transport equations to obtain reaction rates

Analytical solution for 2 species

Assume 2 species (e.g. SO_4^{2-} and Ca^{2+}) in eq. with gypsum Step 1: Chemical system Reaction $Ca^{2+} + SO_4^{2-} \square CaSO_{4s} \Rightarrow \lceil Ca^{2+} \rceil \cdot \lceil SO_4^{2-} \rceil = K$ Stoichiometric matrix $S_e = (-1 \ -1 \ 1)$ Components: $U = (1 - 1) \Rightarrow u = \lceil Ca^{2+} \rceil - \lceil SO_4^{2-} \rceil$ is conservative! Step 2: Solve transport of u Transport equations $\frac{\partial (\phi C_1)}{\partial t} - \mathcal{L}(C_1) = -r \quad (1)$ $\frac{\partial (\phi C_2)}{\partial t} - \mathcal{L}(C_2) = -r \quad (2)$ where $\mathcal{L}(c) = -\mathbf{q} \cdot \nabla c + \nabla \cdot (\mathbf{D} \nabla c)$ (1)-(2) yields: $\frac{\partial(\phi u)}{\partial t} = \mathcal{L}(u)$

Analytical solution for 2 species

Step 4: Compute r Plugging C_2 into $\frac{\partial(\phi C_2)}{\partial t} - \mathcal{L}_t(C_2) = -r$ $\mathcal{L}_t(c) = -\mathbf{q} \cdot \nabla c + \nabla \cdot (\mathbf{D} \nabla c)$ Transport We obtain $r = \frac{\partial^2 C_2}{\partial u^2} [\nabla u^T \cdot \mathbf{D} \cdot \nabla u]$ Chemistry $\frac{\partial^2 C_2}{\partial u^2} = \frac{2K}{(u^2 + 4K)^{3/2}}$

Solution of binary system for pulse input

Spatial distribution of reaction rate

Spatial distribution of total precipitate

2nd Conclusion

In the case of aqueous and dissolutionprecipitation reactions in equilibrium:

- 1. Reactive Transport is indeed easy!
- Only need to solve for independent components. In the calcite example:2 components are needed (+salinity)... Actually, one will suffice by working with mixing ratios... (Desimoni et al., 2007)

3. Mixing drives fast reactions

But do we know how to simulate mixing?

 Traditionally, mixing is simulated by means of dispersion.

Dispersion

Traditionally defined from integrated breakthrough curves, measures spreading

Mixing controls reactions

Spreading and Mixing

Spreading \rightarrow extension \rightarrow it's observed in tracer tests

Mixing

Spreading

```
Mixing \rightarrow dilution \rightarrow controls reactions
```

They are equated in conventional ADE

Effect on data

Alternatives to ADE: MRMT, memory functions, CTRW, FDE,... (non-local)

View medium as consisting
$$\phi_f$$
 of two parts: mobile (f) ϕ_f and immobile (im)

$$\phi_f \frac{\partial c_f}{\partial t} = \nabla \cdot \left(\mathcal{D}_f \cdot \nabla c_f \right) - q \cdot \nabla c_f + F_{im}$$

F_{im}: Exchange between f and im, given by

$$F_{im} = g * \frac{\partial c_f}{\partial t}$$

g: memory function, concept imported from leaky aquifer modelling (Herrera): can be viewed as

- Flux in response to unit change at boundary
- Residence time distribution in immobile region

Berkowitz, Dentz, Haggerty, Benson, LeBorgne... ^{3rd} Kaplan Work and a long etc, including yours truly

Physical and Numerical representation

3rd Kaplan Workshop, 2010, Israel

This can be represented in two ways:

- 1) Having an appropriate mesh with nodes representing i
- Eliminating i as an explicit unknown (expressing c_i as a function of c)

Mobile region transport (Diff)

Mobile region transport (ADE)

Mobile region transport (Diff)

(Silva et al, 2009)

Non local formulations work for conservative transport

Testing the approach on simulated heterogeneous medium: two steps

Conservative transport characterization

- 1) Generate heterogeneous medium
- 2) Simulate conservative transport
- 3) Compute BTC's
- 4) Find memory function (Willmann et al, 2008)

Reactive transport simulation

- 1) Simulate reactive transport of binary system with an equilibrium dissolution precipitation reaction **on the heterogeneous medium**
- 2) Simulate reactive transport using above memory function and proposed approach
- 3) Compare (Willmann et al, 2010)

Generate heterogeneous medium

Simulate transport

Results reactive - transport: 2D simulations: Reaction rates

component u

Results - reactive transport: Reaction rates

Comparison between heterogeneous and MRMT model

Results - reactive transport: Total precipitated mass

3rd (and final) conclusion

- We do not really know how to simulate mixing, but spreading
- Non-local models separate mixing and spreading
- Their parameters can be linked to the underlying heterogeneity.
- Excellent agreement between 2D heterogeneous and 1D MRMT solutions in terms of total precipitated mass.

Salinization by Evaporation Initially water saturated (low $MgSO_4$ conc)

3rd Kaplan Workshop, 2010, Israel

(Gran et al, submitted)

CONCEPTUAL AND NUMERICAL MODELING

1D model coupling multiphase flow & reactive transport using CodeBrightRetraso code Saaltink et al (2004). Chemistry with CHEPROO (Bea et al, 2010).

Model results (line) and measurements (dots)

Results: Water flux

Results: Water flux

Similar experiments acid generation from mine tailings

Water isotopes confirm condensation below

Types of behaviour of solutes

Summary

- Is Reactive transport needed?
 - Equilibrium reactions (rate , where, when, under which conditions) are controlled by transport.
 - Applications probably required to help understand complex interactions
- Can it be understood?
 - All it takes is to understand components
 - The difficult part is to choose the relevant species and reactions.
- Can be solved efficiently?
 - Yes, very often (but not always!)

Reactions are driven by **disequilibrium** Disequilibrium is driven by **actual mixing** We need to know how to evaluate actual mixing!

We are working on it!