Tracing the ozone isotopic anomaly transferred to other atmospheric constituents

J. Savarino

Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS/UJF, France

Kaplan workshop, Israel March 2008

The polar regions: Interests

Arctic

- >Ocean surrounded by continent
 >Close to pollution sources
 >Strong seasonal variations (Temp, light)
 >Greenland Ice sheet→ Ice core site
- >Continent surrounded by oceans
 >Far from pollution sources
 >Strong seasonal variations (Temp, light)
 >Antarctic Ice sheet → Ice core site

Extreme environment, strong contrast

Unique and exceptional paleoclimatic information from Ice Cores

(Temp., GHGs, Chem.)

... but unable to connect chemistry and climate because radical chemistry missing

In the Earth's atmosphere Oxidation = transfer of oxygen atoms

Stable oxygen isotopes as tracer of oxidation What is the best prope to study oxidation reaction? pathways

Outlines

>Introduction: Stable isotopes, MDF, MIF

> The NOx/NOy Cycles and First ¹⁷O nitrate

>Isotope Anomaly Transfer $O_3 \rightarrow NO_2$

> The Arctic Atmosphere

> The Antarctic Atmosphere

$$\delta^{17}O = \left[\frac{(^{17}O/^{16}O)_{SAM}}{(^{17}O/^{16}O)_{STD}} - 1\right]$$
$$\delta^{18}O = \dots$$

in parts per thousand
or "per mil" = %.

Transfer of O_3 Isotopic Anomaly to Other Constituents

 $O_{3}-[O(^{1}D)] + X \rightarrow XO + O_{2}$

First Measurements and Observations

The Nitrate Oxidation Scheme

$NO_{x}/O_{3}/HO_{x}$ Interactions

Model Results based on Polluted MBL:

Samples well modeled but using a ozone anomaly of 35 ‰ while is only 25‰ in the troposphere and on unverified assumptions notably the anomaly transfer

 $\Delta^{17}O(NO_2) = \Delta^{17}O(O_3)$

We have studied the NO + O_3 isotope transfer in laboratory

$NO + O_3 \rightarrow NO_2 + O_2$

To Predict isotopic transfer

Intramolecular distribution of O_3

Atom abstracted by NO

 \succ Ozone made by electrical discharge, by varying P & T \rightarrow control isotopic anomaly

>NO of known isotope composition is mixed with O_3 in a 10 I dark cell at stoichiometry quantity

 $\succ Products NO_2$ and O_2 are collected & analyzed for O isotopes

Knowing isotope composition of reactants and products

 \rightarrow anomaly transfer

 \rightarrow mechanism of reaction

Macroscopic view: Anomaly Transfer from O_3 to NO_2

Michalski

Our result using $\Delta^{17}O(O_3) = 25 \%$ $\Delta^{17}O(NO_2) = 36 \%$

 $\Delta^{17}O(NO_2) = \Delta^{17}O(O_3) = 35 \%$

$\Delta^{17}O(O_{\text{trans}}) = p s \Delta^{17}O(sO_3) + (1-p) a \Delta^{17}O(aO_3)$

With p: probability to react with central atom

Three unknowns but only two are independents: p, (s $\Delta^{17}O$, a $\Delta^{17}O$)

Models of internal ozone isotope distribution

(Bhattacharya et , 2008, Liang et al, 2006)

Statistical treatment

<u>Supported by</u>:

> the non-Arrhenius behavior of the kinetic rate reaction \rightarrow two step mechanisms

>Molecular beam reactions showing two preferential scattering angles for products

Molecular Beam Scattering Experiment (van den Ende et al., 1982)

Quote "... the NO molecule with "head" orientation strikes in a central collision (...) abstracts the central O atom to form NO₂ and recoils backwards.

In a second configuration, ..., the NO molecule strikes in a broad side tail orientation, ..., abstracts an end-O-atom and recoil sideways

No branching ratio given !!!!!

Sampling Sites

Total inorganic nitrate aerosols collected on glass fiber filter

Analytical procedure

Based on the denitrifier method (Sigman, Caciotti, Kaiser)

100 nmol of nitrate + 10 ml of denitrifying bacteria solution

Flushed with He to Au catalyst <--- Produce N₂O <--

> Produce $N_2 + O_2$ \longrightarrow To MS: $\delta^{15}N$, $\delta^{17}O$, $\delta^{18}O$

Not quantitative \rightarrow calibration

Ozone Depletion Events (ODEs)

High Arctic, at polar sunrise \rightarrow destruction of surface ozone

BrO/O₃ Relationship

Ozone and BrO cannot coexist both at high concentration

Bromine : 2 opposing effects

OOTI 2004 - Alert, Canada

IOANA 2005 - Barrow, Alaska

Indicates a change in the way nitrate is formed

IOANA 2005 - Barrow, Alaska

$$\Delta^{17}O_{NO_{3}^{-}} = \frac{2}{3} \frac{\Delta^{17}O_{NO-O_{3}}k_{NO+O_{3}}[O_{3}] + \Delta^{17}O_{NO-BrO}k_{NO+BrO}[BrO]}{k_{NO+O_{3}}[O_{3}] + k_{NO+HO_{2}}[HO_{2}] + k_{NO+BrO}[BrO]} + cst$$

Strong ODE chemistry

Box model ODE

¹⁵N Snow surface DC

Strong post depositional effects

>95% of NO₃⁻ lost
 >¹⁵N jumps for 0 to 200 ‰

¹⁵N DDU-DC Traverse

Date

Nitrogen budget schematic and the recycling of reactive nitrogen on the Antarctic plateau

Conclusions

> Oxygen isotopic anomalies (excess ¹⁷O) are very sensitive to oxidation processes

>Not only sensitive to the isotopic composition but also to <u>radical concentrations</u>

>May be used in the future as a marker of the OCA of paleo atmospheres

Acknowledgements

Funding agencies

CEFIPRA | IFCPAR

UNIVERSITE JOSEPH FOURIER

Collaborators

M. Thiemens

S. Morin

M. Frey

- J. McCabe
- J. Kaiser
- S. Battacharya
 - J-F Doussin

Thank you for your attention ...