In my group we study the large-scale dynamics of the atmosphere and oceans and the interactions between them, with emphasis on tropical climate dynamics. We aim to improve our understanding of variations in the present and past climates, and the governing dynamic and thermodynamic mechanisms that drive them. We also strive to mediate between theoretical and applied geophysical practices, by developing tools and methods for applications such as bias reduction in climate models, interpretation of paleo records, and quantification of variations of the tropical rain belt.
The theoretical tools we use include idealized models of the atmosphere and oceans which are amenable to mathematical analysis, an idealized general circulation model (FMS), as well as the analysis of comprehensive climate models (e.g., CMIP and PMIP models). We also aim to anchor the research in observations. To handle the large variety of observational and modeling datasets, we use a software tool called GOAT (Geophysical Observation Analysis Tool).
Current research projects include:
- Idealised coupled cloud-ocean-atmosphere models
- The effect of continent distribution on tropical climate
- The relation of the atmospheric energy budget and tropical precipitation
- Origin and nature of the double ITCZ bias
- Variations of the tropical rain belt in the present and past climates
- Relating the Hadley cell strength to the atmospheric energy budget